
Prototyping an LLM-powered
encoding workflow for plays

Daniil Skorinkin & Luca Giovannini
University of Potsdam

Potsdam DH Day
13 November 2025

Table of contents

1. Context and motivation
2. 2023: Pre-LLM DraCor encoding automation procedures
3. 2024: LLM-aided generation:

a. testing prompting scenarios
b. comparing models
c. attempt at quality evaluation
d. observations & takeaways

4. 2025: current perspectives

Context and motivation

Context: the DraCor project (https://dracor.org)

https://dracor.org

The DraCor project

● Not a provide of critical editions, rather a research data
collection and data delivery service

● Privileging comparability and wide availability of texts over
philological concerns

● Relatively simple TEIs when compared to other projects

The DraCor TEI model
Text of the play (the bulk of the TEI)<teiHeader> with some play metadata

Acts/scenes/etc.
as nested divs

The DraCor TEI model
Text of the play (the bulk of the TEI)<teiHeader> with some play metadata

Character speech is
linked to individual
characters via
who-tags

A platform…

● Aggregating thousands of uniform TEIs and generally striving to build
large corpora to enable true quantitative analysis

● Focusing on a genre (drama) notable for its semi-structured nature
● Employing a TEI model that is mostly concerned with encoding repetitive

uniform things (such as repeated occurrences of a character’s speech
utterances in the texts, multiple acts and scenes following each other and
so on)

…all this seems to call for markup automation approaches!

Former (pre-LLM) DraCor procedures

Ingo Börner, Frank Fischer, Luca Giovannini, Christopher Lu, Carsten Milling, Daniil Skorinkin, Henny Sluyter-Gäthje, Peer Trilcke:
Onboard onto DraCor: Prototyping Workflows to Homogenize Drama Corpora for an Open Infrastructure. In: DHd2023: »Open
Humanities, Open Culture«. 13–17 March 2023. Book of Abstracts. University of Trier. (doi:10.5281/zenodo.7715333)

EasyDrama markdown

#Acto primero
##Cuadro primero
$Habitación pintada de amarillo.
@Novio
(Entrando)Madre.
@Madre
¿Qué?
@Novio
Me voy.

Ham
A tragedy
By William S
Dramatis Personae
Ham
Egg
Vikings
Act 1
Scene 1
Ham: Lovely Spam!
Egg: Wonderful Spam!
Scene 2
Enter Vikings
Ham: Egg, Spam!
Sausage, and Bacon!
Vikings (singing):
Spam, Spam,(o!)
Spam, Spam, (loud)
Spam, Spam, (quiet)
Spam, and Spam
The end

@title Ham
@subtitle A tragedy
@author William S
^Dramatis Personae
Ham
Egg
Vikings
#Act 1
##Scene 1
@Ham:
Lovely Spam!
@Egg:
Wonderful Spam!
##Scene 2
$Enter Vikings
@Ham:
Egg, Spam!
Sausage, and Bacon!
@Vikings (singing):
~Spam, Spam,(o!)
Spam, Spam, (loud)
Spam, Spam, (quiet)
Spam, and Spam
$The end

1) Raw input 2) EasyDrama markup 3) Auto-generated raw TEI

2023:
using LLM APIs for applying

EasyDrama markdown

This is how the first LLM-encoded
plays in the history of DraCor were
produced

Prompt with manual
EasyDrama examples
in the target language

Output

2024:
experimenting with

end-to-end LLM generation

The models we tried:

The play we started with:

Prompting scenario 1: one-step zero-shot (no example)

1. User asks non-specific prompt: «Please encode this text of a play in
TEI/XML»

2. Model responds affirmative and prompts the user to provide text
3. User provides text of the play
4. Model gives output
5. User saves output and leaves

Prompting scenario 1: one-step zero-shot (no example)
— as a finite-state automaton:

Response
from LLM:
Certainly,

here is your
TEI/XML…

Prompt:
Please

encode this
text of a play
in TEI/XML
+ source in
plain text

Result in
TEI/XML

Example with ChatGPT-4o:

Very small header

chatgpt.com/share/6707d634-0410-800c-922d-35aac5e2d58d

After line 96 of 528
82% of the text gone…

https://chatgpt.com/share/6707d634-0410-800c-922d-35aac5e2d58d

Example with
Claude 3.5 Sonnet

Also very
concise header

Same problem here
95% of the text is gone

Example with
Claude 3.5 Sonnet

Interestingly, the free Mistral 2 Large is much more
successful in this setup — it encoded the whole play:

https://chat.mistral.ai/chat/5b22b8a1-917a-4faa-be7d-d51ea3e32642

and
so
on
…

But stages are
all speeches

https://chat.mistral.ai/chat/5b22b8a1-917a-4faa-be7d-d51ea3e32642

Obvious solution: use the dialogic
functionality of modern LLMs

(the Chat of ChatGPT)

Scenario 2: multi-step zero-shot with a feedback loop

1. User asks a slightly more specific initial prompt: «Please produce a TEI/XML
markup of the following Ukrainian play following the TEI/XML standards for
drama. This play is in {verse|prose}, so lines spoken by characters should be
encoded with {<l>|<p>}. Do not leave or omit any of the text of the original. Do
not invent any new text. Do not stop until the whole play is processed»

2. Model responds affirmative and prompts the user to provide text
3. User provides text of the play
4. Model gives output
5. User gives correction prompt: You've skipped some lines. Do not skip any lines!

Do not add XML comments saying that the dialogue continues! Encode each line
as TEI tags instead. This is a very important task for an international research
project.

6. Model gives updated output
7. User asks model to continue several times (repeated feedback loop)

Prompting scenario 2: multi-step zero-shot with a
feedback loop — as a finite-state automaton:

Response
from LLM:
Certainly,

here is your
TEI/XML…

Prompt:
Please

encode this
text of a play
in TEI/XML
+ source in
plain text

Result in
TEI/XML

Last line of the play
not encoded: feed back

correction prompt

Accumulated
result in
TEI/XML

Last line of
the play
encoded

Continuation
prompts
(feedback
loop)

Actual end of the
play!

Who-tags!
(though with
spaces and in
cyrillic)

Scenario 2 examples:

● Claude required 3 feedback runs; here new approach made even the first
output before feedback much better (roughly 25% of the play was
already there from the first prompt) and also added the ‘who’ attributes
which were not there before:
https://claude.site/artifacts/ae2def61-8f46-4f87-a757-7c159a85b5ec

● Mistral did it in one go as before, and also learned to add ‘who’ attributes
(in English)

● ChatGPT required 6 feedback rounds to encode the entire play (with small
omissions), but lost the who attributes:
https://chatgpt.com/share/6707f22c-4e90-800c-9fc5-a2b13ca67a7a

● When assembled correctly from chunks, the files are well-formed and
TEI-all valid

https://claude.site/artifacts/ae2def61-8f46-4f87-a757-7c159a85b5ec
https://chatgpt.com/share/6707f22c-4e90-800c-9fc5-a2b13ca67a7a

All three examples still lacking the metadata on
characters:

Can we make them all better with a bit of
few-shot learning on existing DraCor

markup?

Scenario 3: multi-step with a feedback loop and
initial example

1. User gives the model an existing DraCor TEI/XML with a play in the same
language and the same mode (verse/prose) and asks to memorize it

2. Then all the steps from Scenario 2

Response
from LLM:
Certainly,

here is your
TEI/XML…

Prompt:
Please

encode this
text of a play
in TEI/XML
+ source in
plain text

Result in
TEI/XML

Last line of the play
not encoded

Accumulated
result in
TEI/XML

Last line of the
play

encoded

Prompt:
Please read

and
memorize

this TEI/XML
+ example
in TEI/XML

Response
from LLM:

I've reviewed
and

memorized
the TEI/XML

structure..

Scenario 3 examples:

● Mistral refused to work in that setting (at least in those couple of times
that we tried) — both the example and the new play together were too
much for it

● Further improvements for ChatGPT, which now has character IDs — and
they even look totally dracor-ish!:
https://chatgpt.com/share/91b90ef2-1067-41c5-95b8-13ebeed394a8

● Both Claude and ChatGPT learned to identify characters by ID even if the
<speaker> text differs a bit

https://chatgpt.com/share/91b90ef2-1067-41c5-95b8-13ebeed394a8

Identified characters (this was never asked explicitly)

Metadata improvements

Attempt at quality assessment (best version of each model)

● Script that counts the missing lines
● Script that counts the ‘made-up’ lines (with some manual

post-assessment)
● Semi-manual tag structure comparison

Takeaways

● With enough input on the desired TEI format, LLMs can produce almost
ready-made DraCor TEI/XMLs (if you poke them enough times)

● Different strategies work better with different LLMs, e.g. in our case:
○ Mistral was the best ‘from-scratch’ model
○ Claude had huge improvement at stage 2, was already almost perfect
○ ChatGPT did its best after looking at an example at stage 3

● Results are not very stable, e.g. with ChatGPT currently it became
somewhat harder to reproduce scenario 3 as smoothly as it worked earlier

● Length generally remains a challenge (which is understandable given the
nature of the Transformer architecture)

2025:
current perspectives

Status quo

● To our knowledge the most recent additions to DraCor (RoDraCor,
IbsDraCor, etc.) have not been encoded with the help of LLMs…

● … and many contributors (e.g. for ArDraCor) still prefer easydrama for its
reliability as compared to LLMs..

● Elsewhere, scholars are developing evaluation framework for assessing
large language models in text encoding tasks (e.g. Strutz & Vogeler 2025;
see also work by Christopher Pollin and others) → we need one for drama
as well.

What about MCP
integration?

Seems really promising, but
much more experimenting
needs to be done.

Next steps:

● evaluating how zero-shot
MCP-supported encoding
performs compared to
“dialogic” encoding

● (long term) prototyping
Interface for direct
LLM-powered play
encoding within the
DraCor website

Mention of “DraCor
standards” leads to tool
activation

Thank you!

skorinkin@uni-potsdam.de
giovannini@uni-potsdam.de

Related abstract:

Giovannini, Luca, and Daniil Skorinkin (2024). "Towards a LLM-powered encoding workflow for plays / Hacia un
flujo de trabajo de codificación para obras de teatro impulsado por LLM". In: TEI2024 Book of Abstracts.

Universidad del Salvador, 2024, pp. 94-95.

mailto:skorinkin@uni-potsdam.de
mailto:giovannini@uni-potsdam.de
https://zenodo.org/records/13883242
https://zenodo.org/records/13883242

